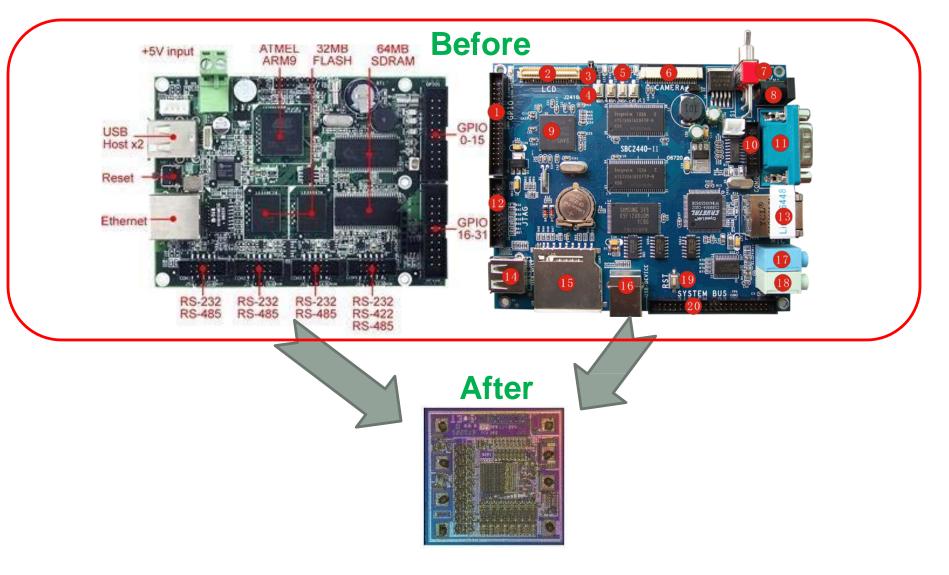
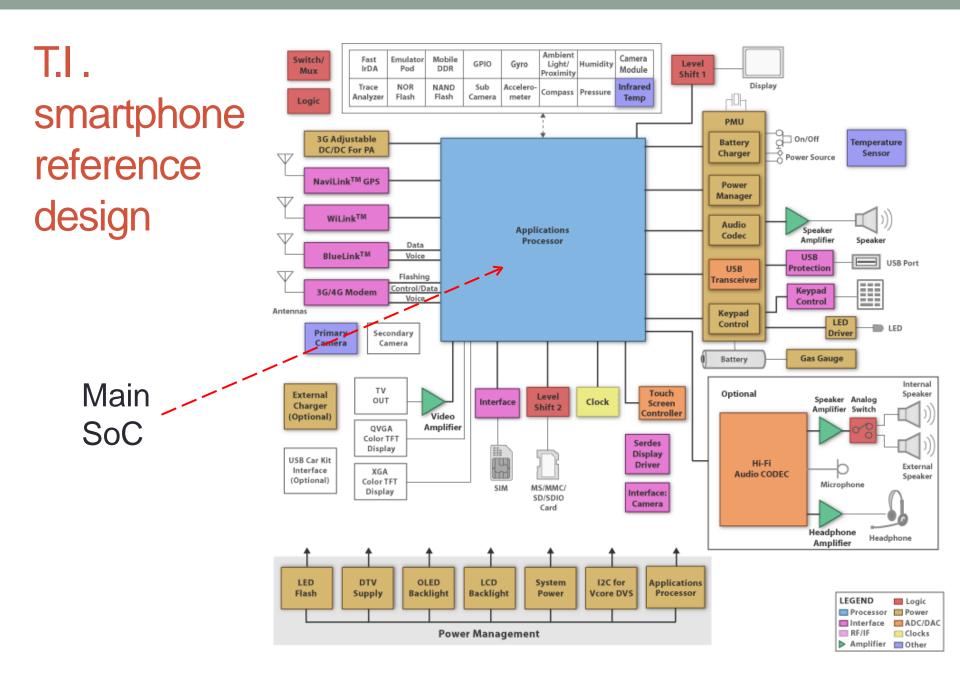
SYSTEMS ON CHIP (SOC) FOR EMBEDDED APPLICATIONS

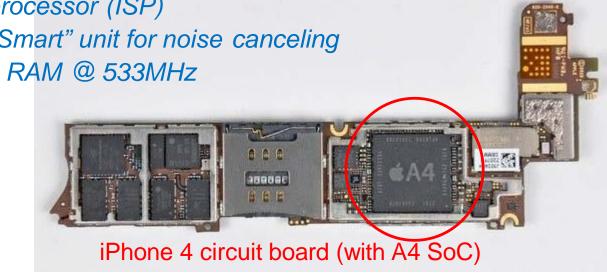

Embedded System

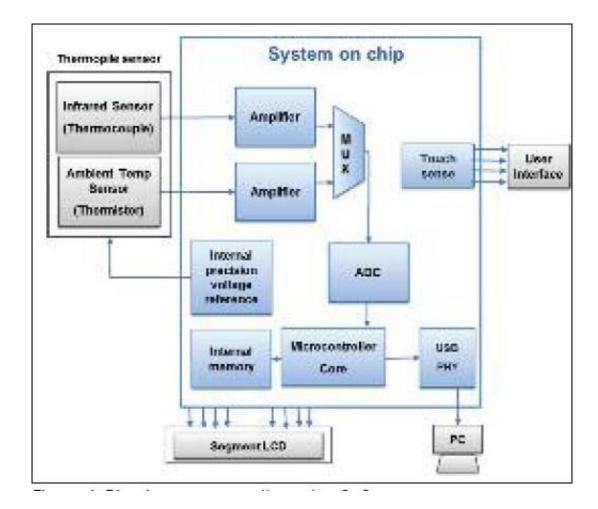

- "System"
 - Set of components needed to perform a function
 - Hardware + software +
- "Embedded"
 - Main function not computing
 - Usually not autonomous
 - Usually a computer inside a system
 - Application specific
 - Subject to constraints

System on chip

- Definition
 - (nearly) complete embedded system on a single chip
- Usually includes
 - Programmable processor(s)
 - Memory
 - Accelerating function units
 - Input/output interfaces
 - Software
 - Re-usable intellectual property blocks (HW + SW)

SoC Design Goal




Apple "A5" SoC

- Used in *iPad 2* and *iPhone 4S*
- Manufactured by Samsung
 - 45nm, 12.1 x 10.1 mm
- Elements (unofficial):
 - ARM Corex-A9 MPCore CPU 1GHz
 - NEON SIMD accelerator
 - Dual core PowerVR SGX543MP2 GPU
 - Image signal processor (ISP)
 - Audience "EarSmart" unit for noise canceling
 - 512 MB DDR2 RAM @ 533MHz

Example: blood pressure monitor SoC

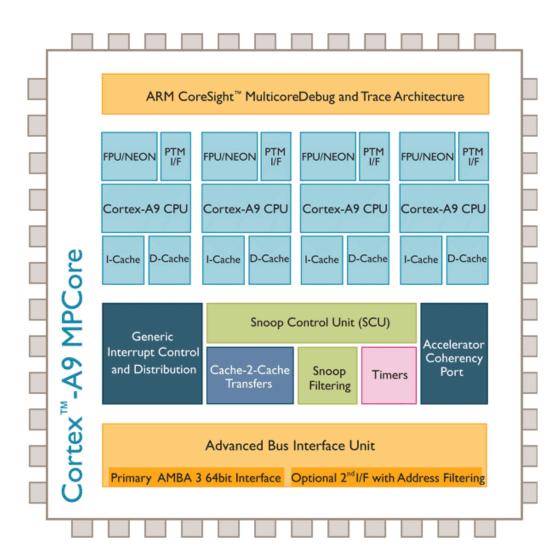
SoC Challenges

- SoC Designs
 - More complex, more functions, higher gate counts
 - Faster, cheaper, smaller
 - More reliable
- How to handle complexity?
 - System design at multiple abstraction levels
 - Integration of heterogeneous technologies & tools
 - Signal integrity & timing
 - Power management
 - SoC test methodology

SoC design with re-usable IP modules

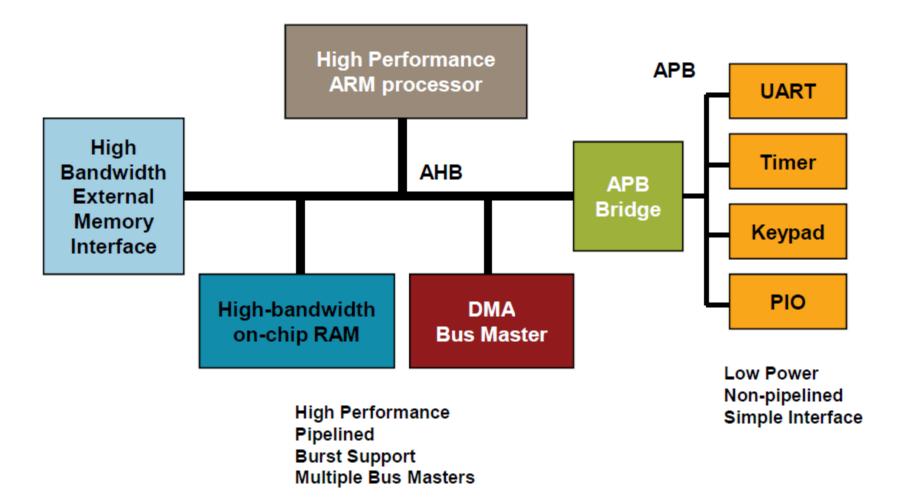
- IP = intellectual property
 - HW or SW block
 - Designed for reuse
 - Need for standards (VSIA)
- Platform-based SoC design
 - Organized method
 - Reduce cost and risk
 - Heavy re-use of HW and SW IP
- Steps in re-use
 - Block -> IP -> integration architecture

ARM IP (ARM makes no hardware)


- Processors
 - Cortex A, Cortex R, Cortex M, ARM11, ARM9, ARM7, SecurCore
- Multimedia IP graphics, video, audio
 - Mali-T604 GPU graphics processor
 - Mali-VE6 video engine
- System IP
 - CoreLink interconnect & memory controllers
 - Supports Cortex and Mali processors
 - AMBA Advanced Memory BusArchitecture
 - CoreSight debug and trace IP (build into SoC)
- ARM "Artisan" Physical IP
 - Logic IP, Standard Cells, Memory Compilers, Interface IP
 - Technology-specific

ARM SoC-based products

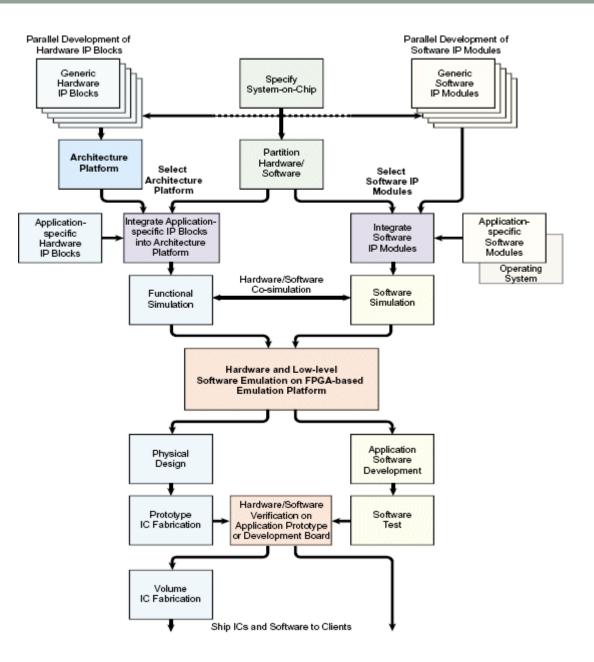
Joe Bungo: CPU Design Concept to SoC


ARM Cortex-A9 MPCore

ARM Advanced MicrocontrollerBus Architecture (AMBA)

- On-chip interconnect specification for SoC
- Promotes re-use by defining a common backbone for SoC modules using standard bus architectures
 - AHB Advanced High-performance Bus (system backbone)
 - High-performance, high clock freq. modules
 - Processors to on-chip memory, off-chip memory interfaces
 - APB Advanced Peripheral Bus
 - Low-power peripherals
 - Reduced interface complexity
 - ASB Advanced System Bus
 - High performance alternate to AHB
 - AXI Advanced eXtensible Interface
 - ACE AXI Coherency Extension
 - ATB Advanced Trace Bus

Example AMBASystem


Joe Bungo: CPU Design Concept to SoC

SoC Design Process

- Customer requirements
- System specification
- Architecture design
 - Hardware vs. software
- Component design
- Integration
- Verification
- Manufacture
- Test

Model, simulate, and evaluate at each stage

SoC Design Flow

High-Level Performance Modeling

Identify Workloads

- Based on target market
- Standard benchmarks (spec, EEMBC)
- O/S based "real" benchmarks browser, real apps

Performance Models

- C-based, highly configurable
- Internally developed (no EDA vendor)
- Fast Instruction-Set Based Model
 - No timing information, but very fast
 - Used for statistics collection and coarse algorithm development (i.e. branch prediction scheme, load/store address patterns)
- Abstracted Pipeline
 - Reasonably accurate, longer development time
 - More specific to microarchitecture

Higher levels of abstraction for SoC

- ESL (Electronic system level)
 - RTL (register transfer level) to TLM (transaction-level modeling)
 - VHDL to SystemC to UML
- HW/SW co-design
 - Simulation models/emulators of hardware to develop software while hardware is being developed
 - Need new tools
 - Consider the whole system
 - Large optimization potential
 - Combination of formal, semi-formal and non formal techniques

Joe Bungo: CPU Design Concept to SoC

Unit RTL

- Synthesizable HDL models
- Split work into units based on functionality
 - Verilog language of choice
 - Write low-level constructs only (assign, case)
 - Why?
 - Portability; we target multiple partners and have to target
 - 'lowest-common denominator' design tools
 - Know your RTL! Easier to count gates "on-the-fly"
- Orderly bring-up; integration as soon as possible

ARM Design Simulation Models (DSM)

- HDL behavioral models of ARM cores
 - for functional and "in some cases, timing" simulation
 - derived from ARM core RTLcode
 - full device functionality
 - register visibility
 - configure cache and memory sizes
 - compatible with VHDL/Verilog simulators (ex. ModelSim)
- Back-annotation capable, timing accurate
 - accept timing through SDF files
 - min/typ/max pin-to-pin delays
 - setup/hold/pulse checks
- Also called "Design Sign-Off Models"
 - generated from technology-specific netlist of a core

SoC integration

- Once core is built, integrated with other cores into chip
- Many millions of gates; can we abstract this out?
- System Design
 - SystemC model transaction level, no timing
 - Can chain processor/peripheral models together to test OS
- Cycle-level system simulation
 - compiled model
 - no internal visibility
 - faster runtimes
 - smaller, simulator won't run out of memory!

ARM Development Tools

- Software development
 - ARM Development Studio 5 (DS-5)
 - For ASICs and ASSPs
 - Compilers, debugger, system performance analyzer, real-time system simulator
 - Keil Microcontroller Development Kit (MDK)
 - For embedded microcontrollers
 - Cortex M, Cortex-R4, ARM7, ARM 9 devices
 - Compilers, debugger, simulators
- Models
 - ARM Fast Models virtual platforms for software development before silicon

Conclusions

- SoC design requires different design approach than traditional ASICs
 - More modeling & simulation at higher abstraction levels
- Heavy use of IP, re-usable modules, platform-based design
 - SoC design team must work with IP vendor and foundry
- Use platform design & standard interfaces between IP
- Hardware/software co-design
- Many design challenges